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Key idea of Imitation Learning : Learning policy
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Learning from Demonstrations: learning agent
has access to samples of (state, action) pairs.

Learning from Observations: learning
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' agent has access to samples of state only.



Motivation: Why Learning from Observations
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Dispense with the costs of collecting expert actions.
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Approach to Human intelligence.
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The Goal of Learning from Observations

Minimizing the footprint (state-transition) distribution
between the expert and the learning agent

min Jiso(m) := Drrlu"(s,s")||u” (s, s")].
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Challenges of Learning from Observations
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Challenges of Learning from Observations

[ Lack of action guidance ]
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[ Sample inefficient

] Learning policy: mg(als)
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Difference between On-Policy and Off-Policy Learning

Learning policy: mg(als)
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For off-policy learning, the agent can reuse samples For on-policy learning, it requires that the behavior

from a replay buffer to speed up learning. policy = target policy, so only fresh samples from the

current policy can be used for training.



Proposed Approach: OPOLO
Oft-Policy Learning from Observations

Highlights of [OPOLO ]

Principled Eample-Efficient, Off—PoIich Eearning from Observationsj




OPOLO: Oft-Policy Learning from Observations

Highlights of [OPOLO ]
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OPOLO: Oft-Policy Learning from Observations

* Upper-bound of the Learning-from-Observation (LfO) Objective:

p'(s,s")
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e Surrogate Objective:

Dx[P||Q] < D4[P||Q] When f =~ x?
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OPOLO: Oft-Policy Learning from Observations

e Surrogate Objective:
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OPOLO: Oft-Policy Learning from Observations

How to enable Off-Policy Optimization ?

e Surrogate Objective:
Still On-Policy Distribution Even more complicated with

I the extra Dr divergence

nlrin Jopolo () :=1 [log ZE(s:s’)] —|—[]Df[u7f(s,a)||MR(s,a)].] (6)




OPOLO: Oft-Policy Learning from Observations

Objective can be off-policy optimized ! @

e Surrogate Objective:
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OPOLO: Oft-Policy Learning from Observations

Objective can be off-policy optimized ! @

e Surrogate Objective:
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OPOLO: Oft-Policy Learning from Observations

Objective can be off-policy optimized ! @

Learning policy: mg(als)
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For off-policy learning, the agent can reuse samples

from a replay buffer to speed up learning. For on-policy learning, it requires that the behavior

policy = target policy, so only fresh samples from the
current policy can be used for training.



To Learn Even Faster:
Policy Regularization as Forward Distribution Matching
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Difference between inverse and forward imitation learning ]

by distribution matching:
\.

teacher distribution

1

learning agent distribution

min Dy, [E O™ ()] min Dy, (1" () 11" ()]
forward matching: Inverse matching:

The proposed objective optimizes (an upper-bound of) the
inverse KL-divergence:

min Jopolo(ﬂ') = Dk, [MW(&S,)HNE(&S,)]
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To Learn Even Faster:
Policy Regularization as Forward Distribution Matching

The proposed objective optimizes (an upper-bound of) the
inverse KL-divergence:

min Jopeto (1) := Dicr, [ (s, /)| |15 (s, )]
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We can combine it with a forward distribution matching
objective to speed up learning:
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OPOLO In A Nutshell

Inverse Action Regularizer
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