Robust Unsupervised Domain Adaptation from A Corrupted Source

Abstract

Unsupervised Domain Adaptation (UDA) provides a promising solution for learning without supervision, which transfers knowledge from relevant source domains with accessible labeled training data. Existing UDA solutions hinge on clean training data with a short-tail distribution from the source domain, which can be fragile when the source domain data is corrupted either inherently or via adversarial attacks. In this work, we propose an effective framework to address the challenges of UDA from corrupted source domains in a principled manner. Specifically, we perform knowledge ensemble from multiple domain-invariant models that are learned on random partitions of training data. To further address the distribution shift from the source to the target domain, we refine each of the learned models via mutual information maximization, which adaptively obtains the predictive information of the target domain with high confidence. Extensive empirical studies demonstrate that the proposed approach is robust against various types of poisoned data attacks while achieving high asymptotic performance on the target domain.

Publication
2022 IEEE International Conference on Data Mining
Zhuangdi Zhu
Zhuangdi Zhu
Assistant Professor (Tenure-Track)

My research centers around accountable, scalable, and trustworthy AI, e.g., decentralized machine learning, knowledge transfer for supervised and reinforcement learning, debiased representation learning, etc.